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A Case Study of Spectral Signature Detection in
Multimodal and Outlier-Contaminated Scenes
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Abstract—Mapping localized spectral features in complex
scenes demands sensitive and robust detection algorithms. This
work investigates two aspects of large images that can harm
Matched Filter (MF) detection performance. First, multimodal
backgrounds may violate normality assumptions. Second, outlier
features can trigger false detections due to large projections
onto the target vector. We review two state of the art methods
designed to resolve these issues. The background clustering
of Funk et al. [1] models multimodal backgrounds, and the
Mixture Tuned Matched Filter (MT-MF) of Boardman and Kruse
[2] addresses outliers. We demonstrate that combining the two
methods has additional performance benefits. A Mixture Tuned
Cluster Matched Filter (MT-CMF) shows effective performance
on simulated and airborne datasets. We demonstrate target
detection scenarios that evidence multimodality, outliers, and
their combination. These experiments explore performance of
the component algorithms and the practical circumstances that
can favor a combined approach.

I. INTRODUCTION

Imaging spectrometers can play an important role in both
Earth Science [3] and planetary geology [4]. The spatial reso-
lution, spectral resolution and sensitivity of these instruments
continues to improve, enabling ever-subtler discrimination of
minerals [5] species [6], [7], and synthetics [8]. The ability to
combine morphological cues with compositional detail gives
them important role in solar system exploration [4]. Detection
of subtle spatially localized signals is a common challenge
across all of these domains. Such signals commonly appear
as subpixel fractions against a background substrate, and are
difficult to identify reliably. Subpixel detection is related to
the challenges of spectrometer mapping [9], classification
[10], and abundance estimation [11]. Here we consider the
challenge of detecting a specific anticipated target at subpixel
abundances. We will assume that its spectral properties are
known from prior in-situ or laboratory measurement.

The Matched Filter (MF) is the classical strategy for weak
signal detection in such cases [12]. It models a d-dimensional
spectral signal x as a linear combination of a background
distribution with the target t. The filter is a d-vector f
whose inner product fTx best discriminates the subpixel signal
from the background. Assuming a target mixing fraction φ,
a background having mean µ∗ and covariance matrix Σ∗,
and ignoring independent additive measurement noise, the
measured spectrum can be written as a perturbed multivariate
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normal distribution:

x = (1− φ)N(µ∗,Σ∗) + φt (1)

Matched Filter implementations often estimate background
means and covariances from the data [12], [13]. For collected
data X = {xi}ni=1 the sample estimates µ and Σ are:

µ =
1

n

∑
xi∈X

xi Σ =
1

n

∑
xi∈X

(xi − µ)(xi − µ)T (2)

The optimal Matched Filter (MF) is the best linear projection
to separate the distributions in which the target is present
and absent. These differ only by a constant factor, having
equivalent covariance statistics. The MF is defined as:

αi = fTxi for f =
Σ−1t

tT Σ−1t
(3)

The expected MF score α is the mixing ratio φ, which ranges
from zero to one.

MF detection is a broad and active area of remote sensing
research, and there are many other formulations. Variants such
as Adaptive Subspace Detectors [14] can improve performance
by exploiting information about the target distribution. The
Finite Target Matched Filter [15] further estimates the mixing
fraction with Maximum Likelihood and uses the optimal like-
lihood ratio test for detection. We also note recent nonlinear
matched filters based on kernel techniques [16]. We refer the
interested reader to extensive taxonomies by Manolakis et al.
and Kraut et al [14], [17], [18].

This paper investigates the general problem of robust MF
detection for challenging background distributions. Several
assumptions of the traditional Matched Filter are difficult
to satisfy for large, complex scenes [19], [20]. First we
consider the problem of multimodal backgrounds. Realistic
backgrounds are seldom normally distributed. Neglecting inti-
mate mixing, measured reflectances are convex combinations
of component materials mixed in proportion to geographic area
[11]. Scenes may also contain discrete terrain regions and
geographic trends, resulting in data that is distributed along
low-dimensional manifolds or split into clusters [1].

Outliers are another challenge. These small regions are
caused by anomalous objects, glint, or instrument artifacts.
It is difficult to characterize their statistical properties; they
are numerically distinctive and may not significantly affect
the sample covariance. However, their projection onto the MF
vector may still have high magnitude [2]. Outliers therefore
have high propensity to cause false alarms, and are generally
not feasible convex combinations of the background and target.

Here we review two illustrative techniques that address
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each of these scenarios and show that their combination
has significant additional performance benefits. We use the
background clustering of Funk et al. [1] to model multimodal
backgrounds, and apply the Mixture Tuned Matched Filter
(MT-MF) of Boardman et al. to mitigate outliers [2]. The com-
bined Mixture Tuned Cluster Matched Filter (MT-CMF) shows
promising performance on simulated and airborne datasets.
Tests demonstrate practical target detection and mapping sce-
narios that evidence multimodality, outliers, and both effects in
combination. These experiments show the success and failure
modes for each component algorithm, and the circumstances
that would favor a combined approach.

II. APPROACH

A. Preconditioning

We will assume the spectral data has been atmospherically
corrected and transformed to reflectance. A preprocessing step
known as the Minimum Noise Fraction transform (MNF)
whitens the data to have zero mean and uncorrelated unit
noise [2]. Methods for estimating noise properties include
calibrating with dark images or empirical estimation from
the scene [21], [22]. We use the empirical method of [2].
This assumes the background is locally homogeneous, so that
differences between neighboring pixels are due to measure-
ment noise. It estimates the covariance of this noise using the
difference between each image pixel xi and the set of two
neighbors to the east and south, denoted Qxi . We average
these contributions, dividing by 1.5 to account for both terms
as in [2]. The noise covariance then decomposes via Singular
Value Decomposition into orthogonal matrices UN and VN ,
and diagonal eigenvalue matrix DN .

UNDNVT
N =

1

1.5 (n− 1)

∑
xi∈X

∑
xj∈Qxi

(xi − xj)(xi − xj)
T

(4)
We calculate each zero-mean noise-whitened datapoint x′i by
projection onto the principal components, with a magnitude
that makes the noise distribution unit-variance isotropic.

x′i = D
−1/2
N UN (xi − µ̂) (5)

The MNF transform then performs a second singular value
decomposition and rotation onto the principal components.
The result is that datapoints have a convenient zero mean rep-
resentation, with orthogonal channels ordered by eigenvalue.

UDVT =
1

n

∑
xi∈X

xix
T
i (6)

x′′ = Ux′ (7)

This preprocessing is implicit in all the analyses that follow,
so we will drop primes from our notation. We also apply the
same transformation to all target spectra before detection.

B. Background Clustering

MF target detection assumes that the background is Gaus-
sian. Most implementations compute background covariance
using a local fixed size window [12], [20]. This rectangular

region is arbitrary and its data may not actually be Gaussian-
distributed. In contrast, the background clustering method of
Funk et al. [1] seeks backgrounds that are compact and Gaus-
sian, but not necessarily contiguous. A k-means clustering
algorithm partitions the data into k disjoint background sets
{Mj}kj=1, each with a sample mean µj and covariance matrix
Σj . The resulting backgrounds are more compact and easier to
separate from the target signal. We will refer to this technique
as the Cluster Matched Filter (CMF).

The k-means clustering algorithm seeks cluster member-
ships that minimize inter-cluster variance [23]. Cluster cen-
troids begin initialized to random data points. An assignment
step assigns each data point to the closest centroid. Then,
an update sets each centroid to be the mean of its member
data points. This continues until convergence, which rarely
requires more than a few iterations. High-dimensional data
requires special care; spectral channels in the original repre-
sentation are highly correlated, and Euclidean distance may
not be physically meaningful. Funk et al. favor a distance
metric that reflects the covariance of the spectral bands. Our
MNF rotation provides this already, thanks to its principal
component representation. We perform clustering using the
three most significant MNF channels. Performance is generally
insensitive to the number of channels retained.

To analyze a candidate spectrum the CMF identifies the
nearest cluster centroid j = argminj‖µj − xi‖2. It uses the
corresponding matched filter fj given by:

αi = fTj (xi − µj) =

[
Σ−1j t

tT Σ−1j t

]T

(xi − µj) (8)

If backgrounds are multimodal or distributed along manifolds,
the local covariance provides a more accurate probability
density and improves target/background separation.

C. Mixture Tuned Matched Filtering

The Mixture Tuned Matched Filter (MT-MF) of Boardman
et al. is a partial unmixing approach combining MF detection
with outlier rejection [2]. It augments the MF score with a
second value βi representing mixing feasibility, the probability
of the observation assuming it is a convex combination of the
background and the target. This penalizes points with a large
magnitude perpendicular to the MF, discriminating feasible
mixtures from statistical anomalies that are improbable under
Equation 1. The MT-MF typifies other methods that use a
decision boundary in a two dimensional space, such as the
false alarm mitigation of DiPietro et al. [24].

The MT-MF estimates the mixing fraction with αi = fTxi

and background contribution xi − αit. It estimates the like-
lihood of this signal with respect to the known background
distribution, an operation simplified by the MNF transform
due to isotropy and unit noise. It is sufficient to use the L2
norm of the result, adjusting channels by the square root of
the MNF eigenvalues and unit noise. This yields the mixture
tuning vector qi. For each channel l, we have:

qi(l) =
xi(l)− αit(l)

D(l)1/2(1− αi)− 1
(9)
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The mixing feasibility is βi = ‖qi‖2. Together, the mixing
feasibility βi and matched filter response αi tell whether
the point is anomalous, and a good match to the target,
respectively. Here we use the quantity αi/βi as a detection
score, which offers consistent performance across all datasets.
This expression resembles the Adaptive Coherence Estimator
[25], though in principle the MT-MF detection statistic can be
any monotonic function of α and β.

D. The Mixture Tuned Cluster Matched Filter

Our proposed approach combines background clustering
with mixture feasibility. We apply the MNF transform fol-
lowed by k-means clustering. We then estimate each cluster’s
mean, covariance, and the corresponding eigenvalues. This
yields a cluster-specific MF estimate αi but also a cluster-
specific feasibility score βi (Algorithm 1 below).

Input: Image {xi}ni=1, number clusters k, target t
Output: Matched filter indices {αi, βi}ni=1

Compute data mean µ̂ = 1
n

∑
xi∈X(xi);

Apply MNF transform using Equation 7;
Find clusters {Mj}kj=1 with k-means;
Compute cluster means {µj}kj=1, covariances {Σj}kj=1 foreach
cluster Mj do

Singular Value Decomposition: Σj = UjDjV
T
j ;

Compute Cluster Matched Filter fj = Σ̂−1
j t/(tT Σ̂−1

j t);
foreach xi ∈Mj do

xi ← Uj(xi − µj);
αi = fTj xi;
foreach l do

qi(l) =
xi(l)−αit(l)

Dj(l)
1/2(1−αi)−1

;

end
βi = ‖q‖2;

end
end

Algorithm 1: Mixture Tuned Cluster Matched Filter

A simple “Daisyworld” simulation [1] demonstrates its
performance. We generate a simple size 1000 dataset drawn
from two Gaussian distributions having opposite correlation
coefficients. We simulate outliers by optionally drawing 33%
of the population from a much broader Gaussian distribution
(Figure 1). A series of tests evaluate MF, CMF, MT-MF, and
MT-CMF strategies by generating random target signatures
uniformly distributed throughout the range of actual (non-
outlier) background data. We inject this target at a 10% mixing
fraction into each background spectrum.

We perform 100 trials for each of three scenarios: a mul-
timodal scenario with two Gaussians, a unimodal background
with outliers, and a multimodal background with outliers.
For each trial we compute the fraction of true positives
achieved at a constant 1% false alarm rate. Figure 2 shows
the resulting scores expressed as percentiles. The original MF
never outperforms any of the variants. The CMF performs
well if its assumptions are satisfied, but is sensitive to outliers.
Conversely the MT-MF method is robust in the presence of
outliers, but its performance is reduced for the multimodal
background. The MT-CMF outperforms the other methods
with an increasing margin as task difficulty increases.
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Fig. 1. Daisyworld simulation, as in Funk et al. [1]. We generate data from
either one or two clusters, as well as a much broader “outlier” distribution.
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Fig. 2. Fraction of actual targets detected at a 1% false alarm rate for the
daisyworld simulation.
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Fig. 3. MT-MF and MT-CMF scores for the daisyworld simulation. We plot
points according to generating distribution (rather than the MT-CMF estimate
of cluster memberships). The black ’x’ indicates the location of the target, and
the black line shows an isocontour of constant α/β. The MT-CMF reduces
spurious false alarms with high incidental MF scores.
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Fig. 5. Target signatures used in simulations.

Figure 3 illustrates this phenomenon visually. It shows
matched filter scores α and mixing feasibility β using MT-
MF and MT-CMF methods, with points labeled according to
generating distribution. The MT-CMF estimates α and β inde-
pendently for each background cluster which results in more
compact distributions. The target lies on the border between
these two clusters, and an accruate multimodal background is
necessary to detect it reliably.

III. EVALUATION

We evaluate the algorithms for a physical remote sensing
scenario by introducing simulated targets into reflectance data
from an airborne instrument. AVIRIS, the Airborne Visi-
ble Infrared Imaging Spectrometer (AVIRIS) [3], [26], is
an imager carried onboard ER-2 and Twin Otter turboprop
platforms. It acquires spectra in the 400-2500nm range with
10nm spectral resolution. We use a subset of data from a
Twin Otter flightline over desert terrain in which the images
have a spatial resolution of approximately 3m. We select three
256×256 image tiles representing diverse natural and artificial
environments (Figure 4). The mountain pass is comprised
of open terrain with several subtle terrain variations. A golf
course scene introduces localized outlier features. Finally
an urban casino scene is the most complex, containing a
wide range of artificial materials, terrain, and large buildings.
The AVIRIS radiance data was atmospherically corrected and
transformed to reflectance.

We acquired target spectra from physical samples repre-
senting a range of natural and synthetic materials. These
include blue and brown nylon tarps, synthetic brown and
white card, white paint, treated nylon fabric, and raw building
materials such as unstained wood, molded plastic, and roofing
shingles. We acquired these reflectance spectra manually under
direct sunlight using an ASD field spectrometer having 10nm
spectral resolution throughout the 350-2400nm range. Figure
5 shows the resulting target spectra after normalizing by the
maximum value.

In order to meaningfully compare algorithms we create a
challenging task by intentionally injecting target signals at a
fractional fill level near the detection limit. We introduce each
target at a 1% fractional fill, equivalent to a square 30 cm wide.

Our test data combines these targets into the reflectance data
with compensatory scaling to account for the area “covered”
by the virtual target.

IV. RESULTS AND DISCUSSION

Our performance evaluation compares the resulting detec-
tion statistics against the background pixels. We found that
performance of the cluster-based algorithms insensitive to the
number of clusters used; here we set k=10 for all images and
clustering methods. Table IV reports the true positive fraction
at a constant false alarm rate of 0.1%. The top-scoring method
for each scenario appears in bold.

The results largely corroborate the simplified Daisyworld
simulation. The classical MF performs worst. Both Mixture
Tuned and Cluster Matched Filters outperform each other for
different background/target combinations. The CMF excels
for the mountain pass scene with few outliers but subtle
surface variations. In contrast, the MT-MF offers superior
outlier rejection for the homogeneous background of the golf
course. Overall, the combined algorithm performs best in
each scenario. Often it is able to achieve significantly better
detection rates than either component technique independently.
This is particularly true for the most challenging scene, which
combines scattered outliers with multimodality.

TABLE I
TRUE POSITIVE FRACTION DETECTED AT A 0.1% FALSE ALARM RATE.

Mountain Pass
Target MF CMF MT-MF MT-CMF
1. Plastic 0.75 1.00 0.92 1.00
2. Tarp, Brown 0.99 1.00 0.99 1.00
3. Tarp, Blue 1.00 1.00 1.00 1.00
4. Wood 0.65 1.00 0.86 1.00
5. Shingle 0.98 1.00 0.99 1.00
6. Card, Brown 0.43 1.00 0.70 1.00
7. Card, White 0.87 1.00 0.97 1.00
8. Paint, White 0.85 1.00 0.95 1.00
9. Nylon 0.99 1.00 0.99 1.00

Golf Course
Target MF CMF MT-MF MT-CMF
1. Plastic 1.00 0.96 1.00 1.00
2. Tarp, Brown 1.00 1.00 1.00 1.00
3. Tarp, Blue 0.97 1.00 0.99 1.00
4. Wood 1.00 0.96 1.00 1.00
5. Shingle 1.00 1.00 1.00 1.00
6. Card, Brown 0.96 0.93 0.98 0.98
7. Card, White 1.00 0.97 1.00 1.00
8. Paint, White 1.00 0.97 1.00 1.00
9. Nylon 0.95 0.99 0.98 1.00

Casino / Highway
Target MF CMF MT-MF MT-CMF
1. Plastic 0.03 0.46 0.31 0.55
2. Tarp, Brown 0.85 0.94 0.87 0.97
3. Tarp, Blue 0.01 0.37 0.22 0.60
4. Wood 0.06 0.48 0.33 0.59
5. Shingle 0.89 0.96 0.87 0.97
6. Card, Brown 0.24 0.39 0.37 0.53
7. Card, White 0.40 0.72 0.66 0.88
8. Paint, White 0.20 0.60 0.55 0.79
9. Nylon 0.43 0.72 0.75 0.92

These results suggest that clustering might improve other
MF variants. Candidates include the Finite Target Matched
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Fig. 4. Mountain Pass, Golf Course, and Casino AVIRIS scenes used in simulations (R:579nm, G:531nm, B:482nm).

Filter that estimates the Maximum Likelihood mixing fraction
[15], and Adaptive Subspace Detectors that measure signal
energy in the subspace of the target [14]. These typically
rely on unimodal background assumptions, and might glean
similar benefits from background clustering. Another promis-
ing avenue for further investigation would be to improve the
background clustering technique. Robust estimation strategies
might improve reliability for fitting multimodal background
distributions to very noisy data. Regardless, the MT-CMF
approach presented here is a good compromise. Simple im-
plementation and robust performance make it a compelling
option for Matched Filter detection in complex scenes.
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